

CS 193A

Multiple Activities and Intents

This document is copyright (C) Marty Stepp and Stanford Computer Science.
Licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Barbara Hecker

Multiple Activities

● Many apps have multiple activities.
– Example: In an address book app, the main activity is a list of contacts,

and clicking on a contact goes to another activity for viewing details.

– An activity A can launch another activity B in response to an event.

– The activity A can pass data to B.

– The second activity B can send data back to A when it is done.

Adding an Activity

● in Android Studio, right click "app" at left: New -> Activity
– creates a new .XML file in res/layouts

– creates a new .java class in src/java

– adds information to AndroidManifest.xml about the activity
(without this information, the app will not allow the activity)

Activities in Manifest

● Every activity has an entry in project's AndroidManifest.xml, added automatically by Android Studio:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.myusername.myapplication" >
 <application android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity android:name=".MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".SecondActivity"
 android:label="@string/title_activity_second"
 android:parentActivityName=".SecondActivity" >
 <meta-data android:name="android.support.PARENT_ACTIVITY"
 android:value="com.example.myusername.myapplication.MainActivity" />
 </activity>
 </application>
</manifest>

Intents

● intent: a bridge between activities;
a way for one activity to invoke another
– the activity can be in the same app or in a different app

– can store extra data to pass as "parameters" to that activity

– second activity can "return" information back to the caller if needed

Creating an Intent

● To launch another activity (usually in response to an event),
create an Intent object and call startActivity with it:

Intent intent = new Intent(this, ActivityName.class);
startActivity(intent);

● If you need to pass any parameters or data to the second
activity, call putExtra on the intent.
– It stores "extra" data as key/value pairs, not unlike a Map.

Intent intent = new Intent(this, ActivityName.class);
intent.putExtra("name", value);
intent.putExtra("name", value);
startActivity(intent);

Extracting extra data

● In the second activity that was invoked, you can grab any extra data
that was passed to it by the calling act.
– You can access the Intent that spawned you by calling getIntent.

– The Intent has methods like getExtra, getIntExtra, getStringExtra,
etc. to extract any data that was stored inside the intent.

public class SecondActivity extends Activity {
 ...
 public void onCreate(Bundle savedState) {
 super.onCreate(savedState);
 setContentView(R.layout.activity_second);
 Intent intent = getIntent();
 String extra = intent.getExtra("name");
 ...
 }
}

Waiting for a result

● If calling activity wants to wait for a result from called activity:
– Call startActivityForResult rather than startActivity.

● startActivityForResult requires you to pass a unique ID number
to represent the action being performed.

● By convention, you declare a final int constant with a value of your choice.
● The call to startActivityForResult will not wait; it will return immediately.

– Write an onActivityResult method that will be called
when the second activity is done.

● Check for your unique ID as was passed to startActivityForResult.
● If you see your unique ID, you can ask the intent for any extra data.

– Modify the called activity to send a result back.
● Use its setResult and finish methods to end the called activity.

Sending back a result

● In the second activity that was invoked, send data back:
– Need to create an Intent to go back.

– Store any extra data in that intent; call setResult and finish.

public class SecondActivity extends Activity {
 ...
 public void myOnClick(View view) {
 Intent intent = new Intent();
 intent.putExtra("name", value);
 setResult(RESULT_OK, intent);
 finish(); // calls onDestroy
 }
}

Grabbing the result

public class FirstActivity extends Activity {

 private static final int REQ_CODE = 123; // MUST be 0-65535

 public void myOnClick(View view) {
 Intent intent = getIntent(this, SecondActivity.class);
 startActivityForResult(intent, REQ_CODE);
 }

 protected void onActivityResult(int requestCode,
 int resultCode, Intent intent) {
 super.onActivityResult(requestCode, resultCode, intent);
 if (requestCode == REQ_CODE) {
 // came back from SecondActivity
 String data = intent.getStringExtra("name");
 Toast.makeText(this, "Got back: " + data,
 Toast.LENGTH_SHORT).show();
 }
 }
}

Implicit Intent (link)

● implicit intent: One that launches another app, without naming
that specific app, to handle a given type of request or action.
– examples: invoke default browser; load music player to play a song

// make a phone call
Uri number = Uri.parse("tel:5551234");
Intent callIntent = new Intent(Intent.ACTION_DIAL, number);

// go to a web page in the default browser
Uri webpage = Uri.parse("http://www.stanford.edu/");
Intent webIntent = new Intent(Intent.ACTION_VIEW, webpage);

// open a map pointing at a given latitude/longitude (z=zoom)
Uri location = Uri.parse("geo:37.422219,-122.08364?z=14");
Intent mapIntent = new Intent(Intent.ACTION_VIEW, location);

http://developer.android.com/training/basics/intents/sending.html

Activities and Action Bar

● action bar: A top-level menu of actions in an activity.
– replaces older "menu" button in past versions of Android

– identifies current activity/app to user

– make common actions prominent and available

– make less common actions available through a drop-down menu

● If your activity is specified to have a "parent" activity on creation
and in AndroidManifest.xml, you will have a "back" button to
return to the calling activity.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

